Efforts to Reduce Carbon Dioxide through the 4 per 1000 Initiative in Yamanashi Prefecture

〜Global Warming Countermeasures in Orchards〜

Keiji Bannai
Director General of the Agriculture Dept.
Yamanashi Prefectural Government
Yamanashi Prefecture is the Largest Producer of Grapes, Peaches, and Plums in Japan!

As Japan’s Fruit Kingdom, Yamanashi Prefecture aims to store carbon through the photosynthesis in orchards focusing on the large amounts of pruned branches from fruit trees every year.

Ave. 0.7ha per Fruit Farmer in Yamanashi Small, but Excellent Farmers!
Soil Sequestration of Carbon Using Carbon Cycling in Orchards

Fruit Trees
- Photosynthesis
- Input of Organic Matter (Compost, etc.)
- Grass Cultivation, Green Manure
- Pruning, Trimming
- Pruned Branch Chips

Large Reservoir of Carbon

Approx. Amount of Soil Carbon Sequestration:
- 500kg/ha
- 400kg/ha
- 300kg/ha

Microorganisms Help in the Decomposition of Organic Matter

Accumulates as Organic Matter
Grass Cultivation

- No-till farming
 - Top soil is covered with grasses, preventing soil runoff caused by wind & rain
 - 300~500kg/10a of organic matter (grass) input per year
 - 80% of orchards in Yamanashi utilize grass cultivation
 - **No-till + Organic Matter Input** contribute to soil carbon sequestration
 - Mostly weeds & grasses, with a variety of vegetation, fostering biodiversity

Plants: 269 species
Insects: 550 species

< biodiversity >
Benefits of Grass Cultivation
(An Environment that Fosters Biodiversity)

- Replenishes Soil with Organic Matter from Cut Grass
- Deep Tillage Effect of Roots
- Prevention of Soil & Nutrient Runoff Caused by Rainfall
- Prevention of Dust & Mud
- Plants: 269 species
- Insects: 550 species
- Reduction of Herbicides

Reduces the need for chemical herbicides by fostering a natural ecosystem that controls weeds.
New Approach to Further Increase Carbon Sequestration Effect in Orchards

○ Pruned branches from fruit trees store large amounts of carbon through photosynthesis
○ Carbon can be stored in chips or fertilizer and applied to the soil
 … but it’ll eventually decompose and be released
○ Carbonization allows for a lot of long-term, soil carbon storage

Approx. Amount of Soil Carbon Sequestration
300kg/ha
Carbonization of Pruned Branches (Explanation)

- Use a simple, portable carbonizer
- Carbonize pruned branches in the field
- Put the charcoal into the soil
- Successfully avoid carbon dioxide emissions almost entirely

Smokeless Carbonizer

Biochar Production Using a Smokeless Carbonizer

Convection air

Conductive heat

refracted heat

Acid-fast Carbonization

Burning image

Biochar from Pruned Branches
After being pruned, branches still hold a lot of moisture, making them difficult to carbonize, so they need to be dried for at least one month before carbonizing.
Charcoal - Used in Japan Since the Edo Period
Expected Soil Improvement Effects

- *The Complete Book of Agriculture (1697)* describes use of rice husk smoked charcoal
- Ground Power Improvement Law (1985) designated charcoal as a soil conditioner

① Soil Physicality
- Works as Coarse Organic Matter
 - (Improves Water Permeability & Retention)

② Soil Microbiology
- Promotes Growth of Microorganisms
 - (Rhizobia or VA Mycorrhizal Fungi)

In addition to improving the soil, it is resistant to decomposition, making it an effective material for storing carbon.
Carbon Dioxide Reduction (Trial Calculation)

Pruned Branches (per Hectare)

① 3000 kg → (50% Water Content) → 1500 kg
② 1500 kg → (50% Carbon) → 750 kg
③ 750 kg → (Carbonization Rate 40%) → 300 kg

Carbon: 300 kg → CO2 Conversion: 1100 kg/ha

Annual Emissions per Car 2300 kg

If all orchard farms in Yamanashi join the initiative (about 10,000 ha), reduced CO2 would be equivalent to about 5000 cars.
Certification System
Promoting Environmentally-Friendly Production Methods

Efforts
Initiatives (Plans) Certification

Criteria
Plans that are expected to achieve carbon sequestration

Achievements
Performance (Results) Certification

Criteria
Upon confirming the actual results of carbon sequestration, products are granted certification

Step Up

We hope that consumption of these ‘4 per 1000 fruits’ can make both humans & earth happy!

Major Initiatives with Carbon Sequestration Effects Recognized by Yamanashi

Herbiculture & application of organic matter such as: compost, pruning chips inputs, pruned branch biochar inputs
Thank you so much for your attention!